

СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ

Свидетельство RU.C.34.011.A № 48418 от 24.10.2012. Регистрационный № 23546-12. Срок действия до 17.08.2027.

ЗАКАЗАТЬ

Преобразователи сопротивление-ток измерительные

ПСТ

Паспорт

ПИМФ.411622.002 ПС

ПИМФ.411622.002 -001.01 ПС Версия 1.0

НПФ КонтрАвт

Россия, 603107 Нижний Новгород, а/я 21 тел./факс: (831) 260-13-08 (многоканальный)

Содержание

1	Назначение	3
2	Обозначение при заказе	5
3	Технические характеристики	6
4	Комплектность	20
5	Устройство и работа преобразователя	21
6	Указание мер безопасности	. 23
7	Подготовка к работе	
8	Порядок работы	
9	Правила транспортирования и хранения	
10	Гарантийные обязательства	
11	Свидетельство о приёмке	
	пложение А Методика поверки преобразователей сопротивление-	
ИЗМ	ерительных ПСТ	38

Настоящий паспорт предназначен для ознакомления с устройством, принципом действия, конструкцией, эксплуатацией, техническим обслуживанием и поверкой ПСТ-b-Pro-MX: Преобразователей сопротивление-ток измерительных ПСТ с программируемым выбором типа входного сигнала (далее преобразователь) и конструктивным исполнением для монтажа в соединительную головку
типа В согласно стандарта DIN 43729. Преобразователи выпускаются по техническим условиям ПИМФ.411525.001 ТУ.

1 Назначение

Преобразователи предназначены для преобразования значения электрического сопротивления резистивных датчиков и термопреобразователей сопротивления (далее TC) в унифицированный токовый сигнал от 4 до 20 мА.

Преобразователи работают с 10 типами ТС и сигналами электрического сопротивления в 7...13 диапазонах для каждого типа ТС по ГОСТ 6651 (таблица 3.1).

Тип входного сигнала и диапазон преобразования выбираются потребителем с помощью кнопочного переключателя, расположенного на корпусе преобразователя, с контролем по светодиодному индикатору.

Преобразователи рассчитаны на установку в соединительную головку типа В согласно стандарту DIN 43729.

Преобразователи рассчитаны на работу с ТС по 4-, 3- и 2-проводной схемам подключения. Определение типа схемы подключения ТС производится автоматически при включении питания преобразователя.

В преобразователе реализована функция контроля замыкания чувствительного элемента (далее ЧЭ) и защитной арматуры ТС (далее – контроль замыкания). Замыканием считается ситуация, при которой значение сопротивления изоляции между ЧЭ и защитной арматурой ТС становится менее 200 кОм.

Преобразователи имеют функцию самодиагностики, позволяют осуществлять непрерывную проверку достоверности данных с индикацией нештатных режимов (аварийных ситуаций): обрыв датчика, выход параметра за пределы допустимого диапазона преобразования, замыкание датчика.

Преобразователи обладают высокой термостабильностью: предел дополнительной погрешности – не более 0,005 % на градус изменения температуры окружающей среды.

Преобразователи могут эксплуатироваться в жёстких условиях – при температурах от минус 40 °C до плюс 80 °C, относительной влажности до 95 % при 35 °C, вибрации с ускорением до $9.8~\text{M/c}^2$.

Преобразователи могут быть использованы в системах измерения температуры в технологических процессах в энергетике, металлургии, химической, нефтяной, газовой, машиностроительной, пищевой, перерабатывающей и других отраслях промышленности, а также научных исследованиях.

Применение преобразователей позволяет передавать измеренный сигнал на удаленные вторичные приборы по стандартным электротехническим проводам.

По специальному заказу выпускаются преобразователи для работы с нестандартными датчиками, НСХ которых предоставляются пользователем.

2 Обозначение при заказе

Примеры записи:

ПСТ-b-Pro-M0: **Преобразователь сопротивление-ток измерительный ПСТ** с программируемым выбором типа входного сигнала, *с базовым набором типов входных сигналов*, соответствует техническим условиям ПИМФ.411525.001 ТУ, тип входного сигнала (ТС) и диапазон преобразования выбираются пользователем при конфигурировании, конструктивное исполнение для монтажа в соединительную головку типа В согласно стандарта DIN 43729.

ПСТ-b-Pro-M1: Преобразователь сопротивление-ток измерительный ПСТ с программируемым выбором типа входного сигнала, *с полным набором типов входных сигналов*, соответствует техническим условиям ПИМФ.411525.001 ТУ, тип входного сигнала (ТС) и диапазон преобразования выбираются пользователем при конфигурировании, конструктивное исполнение для монтажа в соединительную головку типа В согласно стандарта DIN 43729.

3 Технические характеристики

3.1 Метрологические характеристики

3.1.1 Основная погрешность

Пределы основных приведённых погрешностей преобразования для конкретных типов входных сигналов для 4-, 3-проводной схем подключения, условные номера типов входных сигналов и диапазоны преобразования приведены в таблице 3.1. Приведённые погрешности нормированы на диапазон преобразования.

Таблица 3.1 – Типы входного сигнала, диапазоны преобразования и основные приведённые погрешности преобразования

Тип входного сигнала	Обозна- чение	Номер типа входного сигнала	Номер диа- пазона пре- образования	Диапазон преобразования	Пределы основной приведённой погрешности ($\delta_{ m och}$), %
Сопротивление	R	1	1*	(04800) Ом	±0,1
			2*	(02400) Ом	±0,1
			3*	(01200) Ом	±0,1
			4	(0600) Ом	±0,1
			5	(0300) Ом	± 0,1
			6	(0150) Ом	±0,1

Тип входного сигнала	Обозна- чение	Номер типа входного сигнала	Номер диа- пазона пре- образования	Диапазон преобразования	Пределы основной приведённой погрешности ($\delta_{\text{осн}}$), %
Медь 100	100 M	2	1	(-180+100) °C	±0,1
(α=0,00428 °C ⁻¹)			2	(-50+50) °C	±0,1
			3	(-50+100) °C	±0,1
			4	(-50+150) °C	±0,1
			5	(050) °C	±0,25
			При выпуске 6**	(0100) °C	±0,1
			7	(0150) °C	±0,1
			8	(0200) °C	±0,1
Медь 50	50 M	3	1	(-180+100) °C	±0,1
(α=0,00428 °C ⁻¹)			2	(-50+50) °C	±0,1
			3	(-50+100) °C	±0,1
			4	(-50+150) °C	±0,1
			5	(050) °C	±0,25
			6	(0100) °C	±0,1
			7	(0150) °C	±0,1
			8	(0200) °C	±0,1

Тип входного сигнала	Обозна- чение	Номер типа входного сигнала	Номер диа- пазона пре- образования	Диапазон преобразования	Пределы основной приведённой погрешности ($\delta_{\text{осн}}$), %
Платина 100	100 П	4	1	(-200+100) °C	±0,1
$(\alpha=0,00391 ^{\circ}\text{C}^{-1})$			2	(-50+50) °C	±0,1
			3	(-50+100) °C	±0,1
			4	(-50+150) °C	±0,1
			5	(050) °C	±0,25
			6	(0100) °C	±0,1
			7	(0150) °C	±0,1
			8	(0180) °C	±0,1
			9	(0200) °C	±0,1
			10	(0300) °C	±0,1
			11	(0500) °C	±0,1
			12	(0750) °C	±0,1
			13	(0850) °C	±0,1
Платина 50	50 П	5	1	(-200+100) °C	±0,1
(α=0,00391 °C ⁻¹)			2	(-50+50) °C	±0,1
			3	(-50+100) °C	±0,1
			4	(-50+150) °C	±0,1
			5	(050) °C	±0,25

Тип входного сигнала	Обозна- чение	Номер типа входного сигнала	Номер диа- пазона пре- образования	Диапазон преобразования	Пределы основной приведённой погрешности ($\delta_{\text{осн}}$), %
			6	(0100) °C	±0,1
			7	(0150) °C	±0,1
			8	(0180) °C	±0,1
			9	(0200) °C	±0,1
			10	(0300) °C	±0,1
			11	(0500) °C	±0,1
			12	(0750) °C	±0,1
			13	(0850) °C	±0,1
Платина 100	Pt 100	6	1	(-200+100) °C	±0,1
$(\alpha=0,00385 ^{\circ}\text{C}^{-1})$			2	(-50+50) °C	±0,1
			3	(-50+100) °C	±0,1
(MЭK 60751)			4	(-50+150) °C	±0,1
			5	(050) °C	±0,25
			6	(0100) °C	±0,1
			7	(0150) °C	±0,1
			8	(0180) °C	±0,1
			9	(0200) °C	±0,1

Тип входного сигнала	Обозна- чение	Номер типа входного сигнала	Номер диа- пазона пре- образования	Диапазон преобразования	Пределы ос- новной приве- дённой погреш- ности (δοω), %
			10	(0300) °C	±0,1
			11	(0500) °C	±0,1
			12	(0750) °C	±0,1
			13	(0850) °C	±0,1
Платина 500*	Pt 500	7	1	(-200+100) °C	±0,1
$(\alpha=0,00385 ^{\circ}\text{C}^{-1})$			2	(-50+50) °C	±0,1
			3	(-50+100) °C	±0,1
(MЭK 60751)			4	(-50+150) °C	±0,1
			5	(050) °C	±0,25
			6	(0100) °C	±0,1
			7	(0150) °C	±0,1
			8	(0180) °C	±0,1
			9	(0200) °C	±0,1
			10	(0300) °C	±0,1
			11	(0500) °C	±0,1
			12	(0750) °C	±0,1
			13	(0850) °C	±0,1

Тип входного сигнала	Обозна- чение	Номер типа входного сигнала	Номер диа- пазона пре- образования	Диапазон преобразования	Пределы основной приведённой погрешности ($\delta_{\text{осн}}$), %
Платина 1000*	Pt 1000	8	1	(-200+100) °C	±0,1
$(\alpha=0,00385 ^{\circ}\text{C}^{-1})$			2	(-50+50) °C	±0,1
			3	(-50+100) °C	±0,1
(MЭK 60751)			4	(-50+150) °C	±0,1
			5	(050) °C	±0,25
			6	(0100) °C	±0,1
			7	(0150) °C	±0,1
			8	(0180) °C	±0,1
			9	(0200) °C	±0,1
			10	(0300) °C	±0,1
			11	(0500) °C	±0,1
			12	(0750) °C	±0,1
			13	(0850) °C	±0,1
Никель 100	100 H	9	1	(-50+50) °C	±0,1
$(\alpha=0,00617 ^{\circ}\text{C}^{-1})$			2	(-50+100) °C	±0,1
			3	(-50+150) °C	±0,1
			4	(050) °C	±0,25

Тип входного сигнала	Обозна- чение	Номер типа входного сигнала	Номер диа- пазона пре- образования	Диапазон преобразования	Пределы основной приведённой погрешности ($\delta_{\text{осн}}$), %
			5	(0100) °C	±0,1
			6	(0150) °C	±0,1
			7	(0180) °C	±0,1
Никель 500*	500 H	10	1	(-50+50) °C	±0,1
$(\alpha=0,00617 ^{\circ}\text{C}^{-1})$			2	(-50+100) °C	±0,1
			3	(-50+150) °C	±0,1
			4	(050) °C	±0,25
			5	(0100) °C	±0,1
			6	(0150) °C	±0,1
			7	(0180) °C	±0,1
Никель 1000*	1000 H	11	1	(-50+50) °C	±0,1
$(\alpha=0,00617 ^{\circ}\text{C}^{-1})$			2	(-50+100) °C	±0,1
			3	(-50+150) °C	±0,1
			4	(050) °C	±0,25
			5	(0100) °C	±0,1
			6	(0150) °C	±0,1
			7	(0180) °C	±0,1

Для 2-проводной схемы подключения предел основной допускаемой погрешности не превышает 0,25 % от диапазона преобразования для всех типов входного сигнала.

Примечание*: Для модификации **ПСТ-b-Pro-M0** метрологические характеристики данного типа датчика или диапазона преобразования не нормируются.

Примечание**: При выпуске преобразователь сконфигурирован на работу с ТС типа 100 М, диапазон преобразования от 0 до 100 °C.

3.1.2 Дополнительная погрешность

Пределы дополнительной допускаемой погрешности, вызванной изменением температуры окружающего воздуха от нормальной (23 ± 5) °C до любой температуры в пределах рабочего диапазона не превышают 0,5 предела основной погрешности на каждые 10 °C изменения температуры.

Пределы дополнительной допускаемой погрешности, вызванной изменением напряжения питания от его номинального значения до любого в пределах допустимого диапазона напряжений питания (при номинальном значении сопротивления нагрузки), не превышают 0,5 предела основной погрешности.

Пределы дополнительной допускаемой погрешности, вызванной изменением сопротивления нагрузки от его номинального значения до любого в пределах до-

пустимого диапазона сопротивлений нагрузки (при номинальном напряжении питания), не превышают 0,5 предела основной погрешности.

3.1.3 Интервал между поверками составляет 2 года.

3.2 Характеристика преобразования

Преобразователь имеет линейно возрастающую характеристику выходного сигнала при работе с ТС. Зависимость между выходным током и измеряемой температурой определяется формулой (1):

$$Iвыx = 4 + 16 (T - Tмин) / (Tмакс - Tмин), (1)$$

где:

I_{вых} – значение выходного тока, мА;

Т – значение температуры ТС, °С;

 $T_{\text{мин}}, T_{\text{макс}}$ – значения температуры, соответствующие нижнему и верхнему пределу диапазона преобразования температуры, °C;

Зависимость между выходным током и измеряемым сопротивлением резистивного датчика (номер типа датчика 1 по таблице 3.1) определяется формулой (2):

$$I_{\text{вых}} = 4 + 16 \cdot (R - R_{\text{мин}}) / (R_{\text{макс}} - R_{\text{мин}}),$$
 (2)

где: •

I_{вых} – значение выходного тока, мА;

R — значение сопротивления потенциометрического датчика, Ом; ${\bf R}_{\mbox{\tiny MMRL}}, {\bf R}_{\mbox{\tiny MARL}}$ — значения сопротивления, соответствующие нижнему и верх-

нему пределу диапазона преобразования, Ом;

3.3 Эксплуатационные характеристики

oro onem, and an orange map and open orange.	
Номинальный диапазон выходного тока преобразователя от 4 до 20 м	Α.
Диапазон линейного выходного тока преобразователя от 3,8 до 20,5 м	A.
Максимальный диапазон выходного тока преобразователя от 3,8 до 22 м	Α.
Порог срабатывания датчика контроля замыкания (200±50) кО	м.
Измерительный ток TC	A.
Сопротивление каждого соединительного провода (для 2-проводной схемы подключения ТС), не более	
Сопротивление каждого соединительного провода (для 3-проводной схемы подключения ТС), не более	
Сопротивление каждого соединительного провода (для 4-проводной схемы подключения ТС), не более	

3.3.1 Питание преобразователя

Питание преобразователя осуществляется от источника постоянного напряжения.

Номинальное значение напряжения питания	24 B.
Диапазон допустимых напряжений питания	(1036) B.
Потребляемая от источника питания мощность, не более	1,1 B·A.

3.3.2 Сопротивление нагрузки

Номинальное значение сопротивления нагрузки......200 Ом.

Допустимый диапазон сопротивлений нагрузки ($\mathbf{R}_{\!\scriptscriptstyle H}$,Ом) зависит от выбранного напряжения питания ($\mathbf{U}_{\scriptscriptstyle \mathrm{пит}}$,B) и определяется формулой (3):

$$0 \le R_{\text{H}} \le 50 (U_{\text{пит}} - 10) (3)$$

3.3.3 Характеристики помехозащищённости (ЭМС)

Таблица 3.2 – Характеристики помехозащищённости

Степень жёст-		Ампли-	Группа	Критерий
кости испыта-	Виды помех	туда им-	испол-	качества
ний / ГОСТ		пульса	нения	функц-я
3/FOCT	Наносекундные импульсные помехи (НИП)			
30804.4.4-2013	– цепи ввода-вывода	1 ĸB	III	Α
3 / FOCT	Электростатические разряды (ЭСР):			
30804.4.2-2013	контактный разряд	6 кВ	III	Α
30004.4.2-2013	– воздушный разряд	8 kB	III	Α
3/FOCT	Радиочастотные эл. магнитные поля в			
30804.4.3-2013	полосе частот:	10 В/м	III	Α
4/FOCT	– (801000) МГц	30 В/м	IV	A
30804.4.3-2013	– (800960) МГц	30 D/M	10	A
	Кондуктивные радиочастотные помехи,			
3 / FOCT P	наведённые эл. магнитными полями:			
51317.4.16-99	– длительные помехи	10 B	III	Α
	– кратковременные помехи	30 B	III	Α

Степень жёст-		Ампли-	Группа	Критерий
кости испыта-	Виды помех	туда им-	испол-	качества
ний / ГОСТ		пульса	нения	функц-я
4 / ΓΟCT P	Магнитное поле промышленной частоты:			
50648-94	– длительное магнитное поле	30 А/м	IV	Α
50046-94	– кратковременное магнитное поле	400 А/м	IV	Α
4 / FOCT P	Затухающее колебательное магнитное	30 А/м	IV	Α
50652-94	поле	30 A/M	IV	A
4 / FOCT	MARKET OLICO MORINATION FORD	300 А/м	IV	۸
30336-95	Импульсное магнитное поле	300 A/M	IV	Α

3.3.4 Параметры по электробезопасности

По способу защиты человека от поражения электрическим током преобразователи соответствуют классу III по ГОСТ 12.2.007.0-75.

3.3.5 Установление режимов

Время установления рабочего режима (предварительный прогрев), не более. 5 мин.

Время	непрерывной работыкруглосуточно.
3.3.6	Условия эксплуатации
	ратура от минус 40 до плюс 80 °C. ость (без конденсации влаги) 95 % при температуре плюс 35 °C.
3.3.7	Массогабаритные характеристики
Macca	преобразователя, не более40 г.
-	итные размеры, не более(⊘43×27) мм. к преобразователя с установочными и габаритными размерами приве- унке 1.
3.3.8	Параметры надежности
Средн	яя наработка на отказ, не менее1 000 000* ч.
•	ий срок службы, не менее10 лет. ётное значение

4 Комплектность

В комплект поставки входят:

Преобразователь	1 шт
Винты крепления М4х25	2 шт
Паспорт ПИМФ.411622.002 ПС	1 шт.
Потребительская тара	1 шт.

5 Устройство и работа преобразователя

Преобразователь представляет собой аналогово-цифро-аналоговый преобразователь.

На лицевую поверхность преобразователя (см. рисунок 1) выведены:

- клеммы «1», «2» «3», «4»*для подключения соединительных проводов ТС;
- клеммы «5»(+) ,«6»(-) для подключения проводов измерительной цепи (источника питания и нагрузки);
- кнопка «▶» для проведения конфигурирования преобразователя;
- индикаторный двухцветный светодиод для визуального контроля конфигурации преобразователя, а также для индикации аварийных ситуаций.

Примечание*: клемма «**4**» может использоваться для подключения провода датчика контроля замыкания (для 2-,3-проводных схем подключения TC);

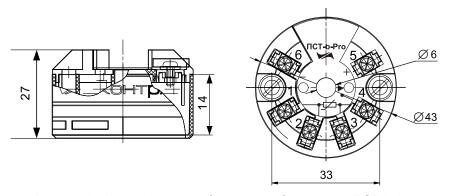


Рисунок 1 – Внешний вид и габариты преобразователя ПСТ-b-Pro

6 Указание мер безопасности

- **6.1** Эксплуатация и обслуживание преобразователя должны производиться лицами, за которыми он закреплен.
- **6.2** По способу защиты человека от поражения электрическим током преобразователь соответствует классу III по ГОСТ 12.2.007.0.
- **6.3** Подключение преобразователя к электрической схеме и отключение его должно происходить при выключенном питании.
- **6.4** При эксплуатации преобразователя необходимо выполнять требования техники безопасности, изложенные в документации на средства измерения и оборудование, в комплекте с которыми он работает.

7 Подготовка к работе

- **7.1** Распаковать преобразователь и провести внешний осмотр, при котором проверить:
 - комплектность в соответствии с п.4;
 - соответствие серийного номера преобразователя указанному в паспорте;
 - отсутствие коррозии на клеммах (при обнаружении следов коррозии клеммы зачистить).
- **7.2** Произвести конфигурирование (выбор типа входного сигнала и диапазона преобразования) по методике, указанной в п.п. 7.2.1, 7.2.2.

7.2.1 Установка типа входного сигнала

- выполнить подключение питания преобразователя в соответствии с п.9.
- подать на преобразователь напряжение питания. При этом должен загореться индикатор зелёным цветом на 5 с (инициализация данных). Далее выполнить действия в соответствии с таблицей 7.1.

Таблица 7.1 – Процедура установки типа входного сигнала

Действия оператора	Индикатор	Описание
 Нажать и удерживать кнопку «▶» до переменного свечения зелёным и красным цветом ин- дикатора 	Свечение красным и зелёным цветом с нарастающей яркостью, затем переменное свечение красным или зелёным цветом с периодом 4 с	Вход в установ- ку типа входно- го сигнала
2. Отпустить кнопку «▶» в момент свечения красным цветом инди- катора и дождаться, чтобы инди- катор погас	Погашен после свечения красным цветом	Завершение входа в установку типа входного сигнала
3. Кратковременно нажать кнопку «▶» необходимое число раз в соответствии с требуемым номером типа входного сигнала (см. таблицу 3.1) Интервал между нажатиями не более 5 с	При нажатии кнопки под- светка красным цветом	Набор номера типа входного сигнала

4. Ожидать переменного свече-	Погашен, затем быстрое	Завершение
ния зелёным и красным цветом	переменное свечение	установки типа
индикатора через 5 с после по-	зелёным и красным цве-	входного сигнала
следнего нажатия кнопки «►»	том в течение 2 с	входного сигнала

Примечание: При установке номера типа входного сигнала, номер диапазона преобразования становится равным 1.

7.2.2 Установка номера диапазона преобразования

Таблица 7.2 – Процедура установки номера диапазона преобразования

Действия оператора	Индикатор	Описание
1. Нажать и удерживать кнопку «►» до переменного свечения зелёным и красным цветом индикатора	Свечение красным и зелёным цветом с нарастающей яркостью, затем переменное свечение красным или зелёным цветом с периодом 4 с	Вход в установку номера диапазо- на преобразова- ния

Действия оператора	Индикатор	Описание
 Отпустить кнопку «▶» в мо- мент свечения зелёным цве- том индикатора и дождаться, чтобы индикатор погас 	Погашен после свечения зелёным цветом	Завершение входа в установку номера диапазона преобразования
3. Кратковременно нажать кнопку «▶» необходимое число раз в соответствии с требуемым номера диапазона преобразования (см. таблицу 3.1), Интервал между нажатиями не более 5 с	При нажатии кнопки под- светка зелёным цветом	Набор номера диапазона пре- образования
4. Ожидать переменного свечения зелёным и красным цветом индикатора через 5 с после последнего нажатия кнопки «▶»	Погашен, затем быстрое переменное свечение зелёным и красным цветом в течение 2 с	Завершение установки номе- ра диапазона преобразования

7.2.3 Просмотр номера типа входного сигнала, номера диапазона преобразования и схемы подключения TC

Таблица 7.3 – Процедура просмотра номера типа сигнала и номера диапазона преобразования

Действия оператора	Индикатор	Описание
	Погашен, затем число подсветок	Просмотр номера
Кратковременно	красным – номер типа входа	типа входа и номера
нажать кнопку «▶»	число подсветок зелёным – но-	диапазона преобра-
	мер диапазона преобразования	зования

Количество одновременных подсветок красным и зеленым цветом после индикации номера диапазона соответствует типу схемы подключения ТС (2 подсветки для 2-проводной, 3 – для 3-проводной, 4 – для 4-проводной схемы подключения ТС).

Внимание! Во время проведения действий по пп. 7.2.1-7.2.3 метрологические характеристики преобразователя **не гарантируются (не нормируются).**

8 Установка преобразователя в соединительную головку

- **8.1** Протянуть провода измерительной цепи преобразователя и, при необходимости, провод датчика контроля замыкания через кабельный сальник соединительной головки. Провода должны быть предварительно очищены от изоляции на длину ~8 мм.
- **8.2** Установить преобразователь в соединительную головку, предварительно протянув провода от ТС через центральное отверстие преобразователя.
- **8.3** Закрепить преобразователь в соединительной головке с помощью винтов M4x25 (момент вращения не более 0,6 Hм).
- **8.4** Поочерёдно, ослабив прижим винта, подвести провода от ТС, измерительной цепи и датчика контроля замыкания с соблюдением типа схемы подключения под шайбу соответствующей прижимной клеммы и закрепить их винтом (момент вращения не более 0,6 Нм).
 - 8.5 Закрыть крышку соединительной головки, закрепив её винтами.

9 Порядок работы

9.1 Для работы преобразователя необходимо пользоваться схемами подключения, приведенными на рисунках 2a, 26, 2в.

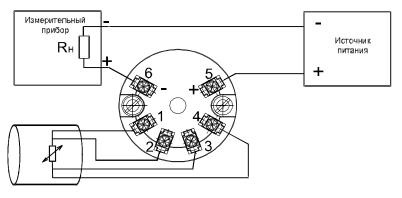


Рисунок 2а – 4-проводная схема подключения ТС

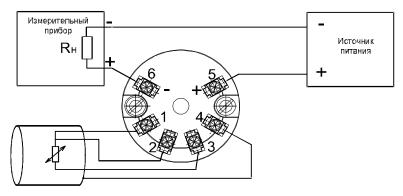


Рисунок 2б – 3-проводная схема подключения ТС

<u>Примечание:</u> Соединительные провода, подключаемые к клеммам **2** и **3**, должны иметь одинаковое сопротивление

<u>Примечание:</u> Для работы преобразователя без контроля замыкания клемма **4** должна быть отключена от защитной (монтажной) арматуры TC.

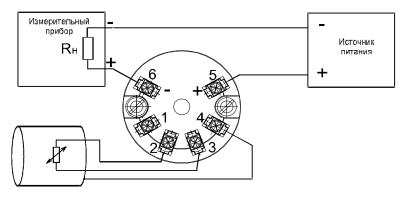


Рисунок 2в – 2-проводная схема подключения ТС

<u>Примечание:</u> Для работы преобразователя без контроля замыкания клемма **4** должна быть отключена от защитной (монтажной) арматуры TC.

▲ Внимание! Эквивалентное сопротивление нагрузки, определенное с учетом внутреннего сопротивления миллиамперметра (сопротивления шунта) и сопротивления подводящих проводов, должно удовлетворять требованиям п. 3.3.

9.2 Включить источник питания (при этом на время инициализации данных 5 с должен загореться индикатор зелёным цветом) и прогреть преобразователь в течение 5 мин.

<u>Примечание.</u> При включении источника питания выполняется автоматическое определение схемы подключения TC.

- **9.3** При работе с TC определять измеряемую температуру $T_{\mbox{\tiny изм}}$ по формуле (1), приведённой в п. 3.2.:
- **9.4** При работе с датчиком сопротивления определять измеряемое сопротивление потенциометрического датчика (номер типа датчика 1) **R**_{кым} по формуле (2), приведённой в п. 3. 2
- **9.5 При обрыве датчика** на входе преобразователя индикатор подсвечивается красным цветом с частотой \sim 5 Гц, ток на выходе преобразователя 21,5 мА.
- **9.6** При замыкании датчика на корпус (сопротивление между клеммами 3 и 4 преобразователя становится меньше (200±5) кОм) индикатор подсвечивается

попеременно красным/зелёным цветом с частотой ~5 Гц, ток на выходе преобразователя 21,5 мА.

- **9.7 При выходе входного сигнала за верхний предел** диапазона линейного преобразования индикатор подсвечивается красным цветом с частотой ~5 Гц, ток на выходе преобразователя 21,5 мА.
- **9.8** При выходе входного сигнала за нижний предел диапазона линейного преобразования индикатор подсвечивается зелёным цветом с частотой ~5 Гц, ток на выходе преобразователя 3,6 мА.
- **9.9 При выявлении аппаратной ошибки преобразователя** индикатор подсвечивается красным цветом постоянно, ток на выходе преобразователя 22 мА. Преобразователь должен быть отправлен на предприятие-изготовитель для ремонта.

10 Правила транспортирования и хранения

10.1 Преобразователь должен транспортироваться в закрытых транспортных средствах любого вида в транспортной таре при условии защиты от прямого воздействия атмосферных осадков.

10.2 Условия хранения:

- температура окружающего воздуха от минус 55 °C до плюс 70 °C;
- относительная влажность воздуха до 95 % при температуре 35 °C;
- воздух в месте хранения не должен содержать пыли, паров кислот и щелочей, а также газов, вызывающих коррозию.

11 Гарантийные обязательства

- **11.1** Предприятие-изготовитель гарантирует соответствие выпускаемых образцов преобразователей всем требованиям ТУ на них при соблюдении потребителем условий эксплуатации, транспортирования и хранения.
- **11.2** Гарантийный срок 36 месяцев. Гарантийный срок исчисляется с даты отгрузки (продажи) преобразователя. Документом, подтверждающим гарантию, является паспорт с отметкой предприятия-изготовителя.
- **11.3** Гарантийный срок продлевается на время подачи и рассмотрения рекламации, а также на время проведения гарантийного ремонта силами изготовителя в период гарантийного срока.

11.4 Адрес предприятия-изготовителя:

Россия, 603107, Нижний Новгород, а/я 21 тел./факс: (831) 260-13-08 (многоканальный)

12 Свидетельство о приёмке

Сведения о приборе:

1				
l				
Штамп OTK				
Первичная поверка проведе	на «»		_ 20	_ r
Товеритель		/		

Приложение А

Методика поверки преобразователей сопротивление-ток измерительных ПСТ

Настоящая методика составлена с учетом требований РМГ 51 и устанавливает методику первичной, периодической и внеочередной поверки преобразователей сопротивление-ток измерительных ПСТ, а также объем, условия поверки и подготовку к ней.

Настоящая методика распространяется на преобразователи сопротивлениеток измерительные ПСТ (далее преобразователи):

- преобразователи сопротивление-ток измерительные ПСТ;
- преобразователи сопротивление-ток измерительные ПСТ-а-Pro;
- преобразователи сопротивление-ток измерительные ПСТ-b-Pro.
- преобразователи сопротивление-ток измерительные ПСТ-d-Pro.

При выпуске преобразователей на предприятии-изготовителе и после ремонта проводят первичную поверку.

Первичной поверке подлежит каждый преобразователь.

Интервал между поверками – 2 года.

Периодической поверке подлежат преобразователи, находящиеся в эксплуатации или на хранении по истечении интервала между поверками.

Внеочередную поверку проводят при эксплуатации преобразователи в случае:

- повреждения одноразовой гарантийной наклейки контроля вскрытия и в случае утраты паспорта;
- ввода в эксплуатацию преобразователя после длительного хранения (более одного интервала между поверками);
- при известном или предполагаемом ударном воздействии на преобразователь или неудовлетворительной его работе;
- продажи (отправки) потребителю преобразователя, не реализованного по истечении срока, равного одному интервалу между поверками.

А.1 Нормативные ссылки

В настоящей методике использованы ссылки на следующие документы:

- ГОСТ 6651-2009 Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний.
- ГОСТ 12.2.007.0-75 Изделия электротехнические. Общие требования безопасности.
- РМГ 51-2002 Документы на методики поверки средств измерений. Основные положения.
- Приказ Минпромтога № 2510 от 31.07.2020 г.

А.2 Операции поверки

А.2.1 При проведении поверки должны быть выполнены операции, указанные в таблице А.1 (знак «+» обозначает необходимость проведения операции).

Таблица А.1 – Операции поверки

	Номер пункта	Операции		
Наименование операции	Методики по-	первичная	периодическая	
	верки	поверка	поверка	
1 Внешний осмотр	A.6.1	+	+	
2 Опробование	A.6.2	+	+	
3 Определение метрологиче- ских характеристик	A.6.3	+	+	

А.2.2 При получении отрицательного результата в процессе выполнения любой из операций поверки преобразователь бракуют и его поверку прекращают. После устранения недостатков, вызвавших отрицательный результат, преобразователь вновь представляют на поверку.

А.3 Средства поверки

Перечень средств поверки, используемых при поверке, приведен в таблице A.2.

Таблица А.2 – Перечень средств поверки

Номер пункта	Наименование и тип применяемых средств измерения (СИ) и
методики	вспомогательного оборудования
поверки	Основные технические характеристики средства измерения
A.6.3.1, A.6.3.2	Калибратор электрических сигналов СА71: (025) мА, (-75+150) мВ.
	Основная погрешность ±0,02 %
	Магазин сопротивлений Р4381 (04800) Ом
	Основная погрешность ±0,02 %
	Мультиметр МY 64 (036) В. Основная погрешность ±1 %
	Гигрометр психрометрический ВИТ-2: Относительная влажность
	до 95 %. Основная погрешность ±7 %
	Вспомогательное оборудование:
	1 Источник постоянного напряжения НҮЗООЗ - диапазон выходного
	напряжения (030) В.
	2 Резистор C2-33H-0,125-200 Ом – ±5 %.

Примечание:

1. Вместо указанных в таблице А.2 средств поверки разрешается применять другие средства поверки, обеспечивающие измерения соответствующих параметров с требуемой точностью.

Все средства измерений, используемые при поверке, должны быть поверены в соответствии с требованиями Приказа Минпромтога № 2510 от 31.07.2020 г

А.4 Требования безопасности

При проведении поверки необходимо соблюдать требования безопасности, предусмотренные ГОСТ 12.2.007.0, указания по безопасности, изложенные в паспортах на преобразователи, применяемые средства измерений и вспомогательное оборудование.

А.5 Условия поверки и подготовка к ней

А.5.1 Поверка преобразователей должна проводиться при нормальных условиях:

- температура окружающего воздуха (23±5) °C;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 86 до 106 кПа;
- напряжение питания (220±10) В;
- сопротивление нагрузки (200±10) Ом;
- отсутствие внешних электрических и магнитных полей, влияющих на работу преобразователей.

А.5.2 Перед началом поверки поверитель должен изучить следующие документы:

- Паспорт ПСТ. Паспорт ПИМФ.411525.001 ПС;
- Паспорт ПСТ-а-Pro ПИМФ.411622.001 ПС;
- Паспорт ПСТ-b-Pro ПИМФ.411622.002 ПС;
- Паспорт ПСТ-d-Pro ПИМФ.411622.006 ПС;
- Инструкции по эксплуатации на СИ и оборудование, используемых при поверке;
- Инструкцию и правила техники безопасности.

А.5.3 До начала поверки СИ и оборудование, используемые при поверке, должны быть в работе в течение времени самопрогрева, указанного в документации на них.

А.6 Проведение поверки

А.6.1 Внешний осмотр

При внешнем осмотре проверяется:

- соответствие комплектности преобразователя паспорту;
- отсутствие механических повреждений;
- отсутствие коррозии на клеммах (при необходимости клеммы зачистить).

А.6.2 Опробование преобразователей

Опробование преобразователей предусматривает тестовую поверку работоспособности преобразователей, по примеру подготовки преобразователей ПСТ-X/X-X к работе, приведенной в паспортах п.п. 7-8 ПИМФ. 411525.001 ПС и конфигурированию преобразователей ПСТ-а-Pro по п. 7.2 ПИМФ.411622.001 ПС, ПСТ-b-Pro по п.7.2 ПИМФ. 411622.002 ПС, ПСТ-d-Pro по п.7.2 ПИМФ.411622.006 ПС.

А.6.3 Определение метрологических характеристик

А.6.3.1 Поверка преобразователей сопротивление-ток измерительных ПСТ-X/X-X

- А.6.3.1.1 Поверка по п. А.6.3.1 заключается в **определении основной приве-дённой погрешности преобразователей сопротивления** при преобразовании сигнала сопротивления в постоянный ток.
- А.6.3.1.2 Поверка проводится путем подачи контрольных значений сопротивлений от магазина сопротивлений на вход преобразователей, контроле выходного постоянного тока на выходе преобразователей и сравнении величин выходного тока с расчетными значениями сопротивлений.
- А.6.3.1.3 Разместить поверяемый преобразователь на рабочем месте, обеспечив удобство работы.

А.6.3.1.4 Подключить поверяемый преобразователь по схеме, приведённой на рисунке А.1.

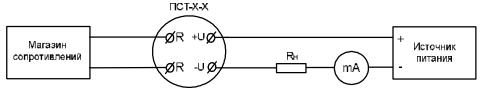


Рисунок А.1 – Схема подключения преобразователя мод. **ПСТ-X/X-X** для проведения поверки

<u>Примечание:</u> Все подключения и отключения преобразователя в процессе поверки следует проводить при выключенном источнике питания.

- A.6.3.1.5 Включить источник питания и прогреть преобразователь в течение 15 мин.
- А.6.3.1.6 Выбрать в диапазоне измеряемых температур для проверяемой модификации преобразователя 6 точек Ti (i = 1, ..., 6), равномерно расположенных по диапазону.
- А.6.3.1.7 Для проверяемого типа термопреобразователя сопротивлений, соответствующего проверяемой модификации преобразователя, определить по

таблице HCX из ГОСТ 6651-2009 значения сопротивления \mathbf{R}_i ($\mathbf{i} = 1, ..., 6$), которые соответствуют выбранным точкам $\mathbf{T}_1, ..., \mathbf{T}_6$ по температуре.

А.6.3.1.8 Последовательно устанавливая на магазине сопротивлений значения шести контрольных точек \mathbf{R}_i ($\mathbf{i} = 1, ..., 6$), измерить и зафиксировать соответствующие значения $\mathbf{I}_{\text{вых}}$ ($\mathbf{i} = 1, ..., 6$) выходного тока преобразователя в мА.

А.6.3.1.9 Определить значения основной приведённой погрешности преобразователей $\delta_{\text{осн}}$ по формуле (А.1):

$$\delta_{\text{осні}} = 100 \cdot (I_{\text{выхі}} - I_{\text{расчі}})/I_{\text{н}},$$
 при ($i = 1, ..., 6$), (A.1)

где: $\delta_{\text{осні}}$ – основная приведенная погрешность преобразователей, %;

 $I_{\text{вых}i}$ – измеренное значение выходного тока преобразователей, мА;

 $I_{\text{расчі}} = I_{\text{вых.мин}} + I_{\text{н}} \cdot (T_{\text{i}} - T_{\text{мин}}) / (T_{\text{макс}} - T_{\text{мин}}) - расчётное значение выходного тока преобразователя в мА, которое соответствует точке <math>T_{\text{i}}$, выбранной в диапазоне измеряемых температур.

 T_{i} – проверяемые контрольные точки по температуре, °C.

 $T_{\text{макс}}, T_{\text{мин}}$ — верхняя и нижняя границы диапазона измеряемых температур для проверяемой модификации преобразователя, °C.

 $I_{H} = 16 \text{ мА} -$ нормирующее значение выходного тока.

 $I_{\text{вых.мин}} = 4 \text{ мA}$ — значение выходного сигнала преобразователя при нижнем значении температуры.

А.6.3.1.10 Результаты поверки преобразователей по п.А.6.3.1 считаются положительными, если для всех контрольных точек максимальное из значений основной приведённой погрешности $\delta_{\text{осні}}$ не превышает **0,25** %, а абсолютная погрешность $\Delta \leq 40$ мк Δ .

При отрицательных результатах поверки преобразователь в обращение не допускается (бракуется) и отправляется для проведения ремонта на предприятие изготовитель.

А.6.3.2 Поверка преобразователей сопротивление-ток измерительных ПСТ-X-Pro

- А.6.3.2.1 Поверка по п. А.6.3.2 заключается в определении основной приведённой погрешности преобразователей сопротивления при преобразовании сигнала сопротивления в постоянный ток.
- А.6.3.2.2 Поверка проводится путём подачи контрольных значений сопротивлений от магазина сопротивлений на вход преобразователей, контроле выходного постоянного тока на выходе преобразователей и сравнении величин выходного тока с расчётными значениями сопротивлений.
- А.6.3.2.3 Величины контрольных значений сопротивлений для всех типов датчиков и расчётные значения выходного тока приведены в таблице А.3.

Таблица A.3 – Расчётные значения сопротивлений контрольных точек для поверяемых диапазонов

№ контрольной точки	1	2	3	4	5	6			
Диапазон сопротивлений (04800) Ом									
R _i , Ом	0	960	1920	2880	3840	4800			
Диапазон сопротивлений (02400) Ом									
R _i , Ом	0	480	960	1440	1920	2400			
Диапазон сопротивлений (01200) Ом									
R _i , Ом	0	240	480	720	960	1200			
Диапазон сопротивлений (0600) Ом									
R _i , Ом	0	120	240	360	480	600			
Диапазон сопротивлений (0300) Ом									
R _i , Ом	0	60	120	180	240	300			
Диапазон сопротивлений (0150) Ом									
R _i , Ом	0	30	60	90	120	150			
Ірасч, мА	4	7,2	10,4	13,6	16,8	20			

- А.6.3.2.4 Разместить поверяемый преобразователь на рабочем месте, обеспечив удобство работы.
- А.6.3.2.5 Преобразователь сконфигурировать по методике п. 7.2 паспорта ПИМФ.411622.001 ПС (ПИМФ.411622..002, ПИМФ.411622.006) ПС в зависимости от модификации преобразователя на работу с сигналами сопротивления на диапазон от 0 до 4800 Ом, по таблице 1 паспорта, номер сигнала (датчика) $\mathbf{1}$, номер диапазона преобразования $\mathbf{1}$ (1/1).

А.6.3.2.6 Подключить поверяемый преобразователь по схеме:

- приведённой на рисунке А.2 для модификации преобразователя ПСТ-а-Pro;
- приведённой на рисунке А.З для модификации преобразователя ПСТ-b-Pro;
- приведённой на рисунке А.4 для модификации преобразователя ПСТ-d-Pro.

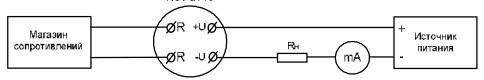


Рисунок А.2 – Схема подключения преобразователя мод. **ПСТ-а-Рго** для проведения поверки

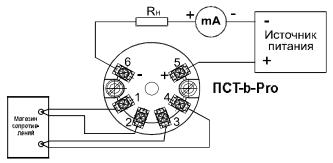


Рисунок А.3 – Схема подключения преобразователя мод. **ПСТ-b-Pro** для проведения поверки

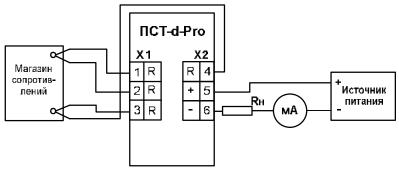


Рисунок А.4 – Схема подключения преобразователя мод. **ПСТ-d-Pro** для проведения поверки

- A.6.3.2.7 Включить источник питания и прогреть преобразователь в течение 15 мин.
- А.6.3.2.8 Подать от магазина сопротивлений **Ri** сигнал сопротивления для первой контрольной точки из таблицы А.3. Зафиксировать показания выходного тока $I_{\text{вых}}$ на выходе преобразователя.

А.6.3.2.9 Вычислить абсолютную ошибку преобразования Δ по току по формуле (A.2):

$$\Delta = |\mathbf{I}_{\text{Bax}} - \mathbf{I}_{\text{pac}}|, (A.2)$$

где $I_{\text{вых}}$ – измеренный выходной ток преобразователя, мА:

 I_{pac} – расчётный ток преобразователя, приведенный в таблице А.3, мА.

А.6.3.2.10 Повторить операции п.п. А.6.3.2.8 – А.6.3.2.9 для оставшихся пяти контрольных точек.

А.6.3.2.11 Повторить операции п.п. А.6.3.2.5 – А.6.3.2.9 для всех диапазонов по таблице А.3.

А.6.3.2.12 Результаты поверки преобразователей по п.А.6.3.2 считаются положительными, если для всех проверяемых диапазонов и контрольных точек преобразователя выполняется условие (А.3):

$$\Delta \leq 0,16 \cdot \delta_{\text{och}}$$
, MA, (A.3)

где $\delta_{\text{осн}}$ – основная допускаемая приведённая погрешность преобразования данного диапазона преобразования, для проверяемого преобразователя.

0,16 - расчётный коэффициент, мА/%.

При отрицательных результатах поверки преобразователь в обращение не допускается (бракуется) и отправляется для проведения ремонта на предприятие изготовитель.

А7 Оформление результатов поверки

- А7.1 При положительных результатах первичной поверки преобразователь признаётся годным к эксплуатации, о чём делается отметка в паспорте на преобразователь за подписью поверителя. При периодической поверке оформляется свидетельство о поверке в соответствии с Приказом Минпромтога № 2510 от 31.07.2020 г. Подпись поверителя заверяется поверительным клеймом.
- A7.2. При отрицательных результатах поверки преобразователь в обращение не допускается (бракуется), на него выдаётся извещение о непригодности с указанием причин.

ЗАКАЗАТЬ